您的位置: 首页> 资讯 > 正文

永磁同步电机(PMSM)的FOC闭环控制详解 环球百事通

2023-06-27 17:41:50 来源:电机及控制

在学习FOC控制前,我对于FOC控制完全不懂,只知道中文叫做磁场定向控制,因公司产品开发需要用到对永磁同步电机(PMSM)进行精确的位置控制,才开始从网上了解什么是FOC,有哪些数学公式,控制的过程是怎么样的,但由于公司没有人知道这一块的知识,所以只能一个人慢慢找资料学习,网上有不少关于FOC的资料,不过讲的都不全面,而且有的还会存在错误,但是不懂的时候也无法分辨对错,所以走了不少弯路。所以将个人的学习心得记录于此,与大家分享,由于需要对电机进行位置控制,所以使用了14位分辨率的磁编码器。

FOC主要是通过对电机电流的控制实现对电机转矩(电流)、速度、位置的控制。通常是电流作为最内环,速度是中间环,位置作为最外环。


(资料图片仅供参考)

下图是电流环(最内环)的控制框图:

图一:电流环

在图一中,Iq_Ref是q轴(交轴)电流设定值,Id_Ref是d轴(直轴)电流设定值,关于交轴直轴不再介绍,大家自行百度。

Ia, Ib, Ic分别是A相、B相、C相的采样电流,是可以直接通过AD采样得到的,通常直接采样其中两相,利用公式Ia+Ib+Ic=0计算得到第三相,电角度θ可以通过实时读取磁编码器的值计算得到。

在得到三相电流和电角度后,即可以进行电流环的执行了:三相电流Ia, Ib, Ic经过Clark变换得到Iα, Iβ;然后经过Park变换得到Iq, Id;然后分别与他们的设定值Iq_Ref, Id_Ref计算误差值;然后分别将q轴电流误差值代入q轴电流PI环计算得到Vq,将d轴电流误差值代入d轴电流PI环计算得到Vd;然后对Vq, Vd进行反Park变换得到Vα, Vβ;然后经过SVPWM算法得到Va, Vb, Vc,最后输入到电机三相上。这样就完成了一次电流环的控制。

当对PMSM进行速度控制时,需要在电流环外面加一个速度环,控制框图如下:

图二:速度电流双环

在图二中,Speed_Ref是速度设定值,ω是电机的转速反馈,可以通过电机编码器计算得到。

将计算得到的电机速度ω与速度设定值Speed_Ref进行误差值计算,代入速度PI环,计算的结果作为电流环的输入;比较图二和图一的电流环部分可以发现,图二中d轴电流被设定为零(Id_Ref=0),因为d轴电流对于驱动电机的转动不会产生输出力,所以通常情况下都会将d轴电流设定为零(但不是总是设定为0的);当Id_Ref=0时,Iq_Ref就等于了速度环的输出;再结合上面的电流环,就实现了速度电流的双闭环控制。

当对PMSM进行位置控制时,需要在速度电流环外面加一个位置环,控制框图如下:

图三:位置速度电流三环

在图三中,Position_Ref是位置设定值,Position(θ)是电机的当前位置,可以通过电机编码器得知,位置控制可以分为电角度位置控制和机械角度位置控制。

将得到的当前位置Position(θ)和位置设定值Position_Ref计算误差值代入P环,输出作为速度环的输入Speed_Ref,在结合上面的速度电流环实现位置速度电流三闭环控制。

在实际使用中,由于磁编码器无法直接返回电机转速ω,需要计算一定时间内的磁编码值变化量来表示电机的转速ω(M法测速),假设1ms的角度变化量为δ个,则ω=δ/1ms=δ,(单位:个/ms),当电机转速比较快的时候,这样的方式是可以的;但是在位置控制的时候,电机的速度会很慢,1分钟的转速可能只有1、2转,用M法测速会存在非常大的误差,增大单位时间可以适当降低误差,但随之而来整个系统的延迟也会增大。

所以为了避免速度环节带来的误差以及系统延迟带来的影响,只使用位置和电流组成的双环进行控制,不过此时需要对位置环做一定的变化,控制框图如下:

图四:位置电流双环

在图四中,只使用了位置电流双环实现位置控制。

在位置控制中,会涉及到电机的启动加速和刹车减速,所以只有P环肯定是不够的,还需要加入I和D实现PID环进行控制;如果对于位置控制的精度要求不高,允许存在1、2度的误差的话,可以只使用P和D实现PD环控制即可。

以上简单介绍了电机控制中的过程,不难发现,主要包括了PID控制器和FOC控制算法。PID控制器是自动控制中最常用的一种控制算法,应用非常广泛,网上关于PID的资料也非常多,下面详细讲解FOC控制算法。

从上面的控制框图中可以看出,FOC主要包含了电流采样、坐标变换(Clark, Park, 反Park)、SVPWM。

前面讲过,三相电流Ia, Ib, Ic是可以通过采样和公式Ia+Ib+Ic=0得到的,并三相电流的相位差是120°,如下图:

图五:三相电流

图五中Ia, Ib, Ic分别是三相电流。

然后经过Clark变换得到Iα, Iβ,如下图:

图六:Clark变换

Clark变换是将静止的三相a, b, c变换成静止的两相α, β,由于不知道如何在编辑器中输入矩阵,所以选择在word中写好截图过来,公式如下:

图六 1

于是可以推导出:

图六 2

将Ia+Ib+Ic=0代入上面的公式,可以得到:

图六 3

我们需要关心的是Iα和Iβ,所以Clark变化最后的公式就是:

Iα = Ia ;

Iβ = (Ia + 2*Ib) /√3 ;

然后经过Park变换得到Iq, Id,他们是相互垂直的并且同时跟随着磁场方向在旋转,如下图:

图七:Park变换

如图七所示,Park变换是将静止的α,β电流变换成旋转的q轴和d轴电流,θ是旋转的角度,也称为电角度。

以电角度θ为夹角,分别对Iα,Iβ进行矢量分解,计算投影到q轴和d轴上的电流分量,可以得到以下公式:

Iq = Iβcosθ - Iαsinθ

Id = Iαcosθ + Iβsinθ

在计算得到Iq,Id之后,需要分别跟他们的设定值计算误差,然后分别做PI控制,得到Vq,Vd。

然后对Vq,Vd进行反Park变换,如下图:

图八:反Park变换

在图八中,将Vq,Vd反向变换成Vα,Vβ,变换方式与Park变换类似,以电角度θ为夹角,分别对Vq,Vd进行矢量分解,计算投影到α轴和β轴上的电压分量,可以得到如下公式:

Vα = Vdcosθ - Vqsinθ;

Vβ = Vqcosθ + Vdsinθ;

在得到Vα和Vβ之后,需要通过SVPWM算法计算Va,Vb,Vc,关于SVPWM算法,网上有篇文章讲解的非常好,叫做《SVPWM的原理及法则推导和控制算法详解》,详细的内容可以去看这篇文章,下面就根据这篇文章做一些总结性的讲解。

SVPWM的全称是空间矢量脉宽调制(Space Vector Pulse Width Modulation),是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加 以组合,使其平均值与给定电压矢量相等。

假设直流母线电压为Udc,三相相电压分别为UA,UB,UC,且相互之间的相位差为120°;假设Um为相电压有效值,f为电源频率,则有:

图八 1

则三相电压空间矢量相加的合成空间矢量U(t)就可以表示为:

图八 2

U(t)是一个旋转的空间矢量,幅值不变,为相电压峰值,且以角频率ω=2πf按逆时针方向均匀旋转,而空间矢量U(t)在三相坐标轴(a,b,c)上的投影就是对称的三相正弦量。

下面讨论一下电压空间矢量:

图九:三相逆变电路

图九是一个三相逆变电路,每一相在同一时刻只有一个桥会导通,定义这样一个开关函数Sx(x=a、b、c):

上桥臂导通时,Sx=1;下桥臂导通时,Sx=0。举个例子:假设a相上桥导通,b和c相下桥导通,那么三相的结果就是a=1,b=0,c=0,组合的结果就是U4(100)。

在同一时刻,如果不同相的上下桥同时存在导通的桥,那么就会有相电流产生,属于非零矢量;如果同一时刻,三相的上桥同时导通或者三相的下桥同时导通,此时并不会有相电流产生,属于零矢量。所以总共存在6个非零矢量:U1(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110);以及两个零矢量:U0(000)、U7(111)。电压矢量的坐标如下图所示:

图十:电压空间矢量图

在图十中,显示了8个电压空间矢量U0 ~ U7,以及六个扇区Ⅰ~Ⅵ。

假如Sx(x=a,b,c)=(100),则此时Ua=⅔Udc,Ub=-⅓Udc,Uc=-⅓Udc,同理可以得到其他各种组合下的空间电压矢量,如下表:

图十一:电压空间矢量表

结合图十和图十一可知,非零矢量的幅值相同,均为⅔Udc,相邻的矢量间隔60°,而两个零矢量幅值为0,位于中心。在每一个扇区,选择相邻两个电压矢量以及零矢量,按照伏秒平衡原则来合成每个扇区内的任意电压矢量,即:

图十一 1

或者等效成下式:

图十一 2

其中,Uref为期望电压矢量,T为周期,Tx、Ty、T0分别对应两个非零矢量Ux、Uy和零矢量U0在一个周期T内的作用时间,其中U0包括U0和U7两个零矢量。由于最终要得到的是作用在三相半桥上的占空比,也就是三个定时器通道的捕获比较寄存器的值,所以我们只要能计算出Tx、Ty、T0的值,就可以知道三个捕获比较寄存器值。

先来看一下当Uref在第Ⅰ个扇区时的情况,见下图:

图十二:电压空间矢量位于第Ⅰ扇区

如图十二所示,Uref位于U4和U6之间,由正弦定理可得:

图十二 1

得到以U4、U6、U7及U0合成的Uref的时间后,接下来就是如何产生实际的脉宽调制波形。在SVPWM调制方案中,零矢量的选择是最具灵活性的适当选择零矢量,可最大限度的减少开关次数,尽可能避免在负载电流较大的时刻的开关动作,最大限度的减少开关损耗。因此,我们以减少开关次数为目标,将基本矢量作用顺序的分配原则选定为:在每次开关状态转换时,只改变其中一相的开关状态,并且对零矢量在时间上进行了平均分配,以使产生的PWM对称,从而有效的降低PWM的谐波分量。可以发现当U4(100)切换至U0(000)时,只需改变A相上下一对切换开关,若由U4(100)切换至U7(111)则需要改变B、C相上下两对切换开关,增加了一杯的切换损失。因此要改变电压矢量U4(100)、U2(010)、U1(001)的大小,需配合零电压矢量U0(000),而要改变U6(110)、U3(011)、U5(101),需要配合零电压矢量U7(111)。这样通过在不同扇区内安排不同的开关切换顺序,就可以获得对称的输出波形,其他各扇区的开关切换顺序下表:

图十二 2

同样以第Ⅰ扇区为例,电压矢量的先后顺序为U0、U4、U6、U7、U7、U6、U4、U0,将其画成a,b,c三相的PWM波形的话就如图十三所示:

图十三:第1扇区三相PWM波形

一般我们在控制PMSM的时候都会将PWM波形设定为中央对齐模式,所以在图十三中,对称中心的两边各个电压矢量所占的时间都是该电压矢量在整个周期中所占时间的一半。

要先实现SVPWM的实时调制,我们首先要知道Uref所在的扇区位置,然后才能利用所在扇区的相邻电压矢量和适当的零矢量来合成电压矢量。由图十二可以知道,电压矢量Uref与α轴的夹角θ决定了Uref所在的扇区,所以我们只要判断θ角的大小即可知道Uref所在的扇区。

由 tanθ=Uβ/Uα,可知 θ=arctan(Uβ/Uα),当Uref位于第Ⅰ扇区时,θ满足0<θ<60°,此时,Uα>0,Uβ>0,tanθ满足 00,Uβ>0,√3Uα>Uβ。

同理可以得出Uref位于其他扇区时的等价条件,如下:

Uref位于第Ⅱ扇区时的充要条件是:Uβ>0,√3|Uα|

Uref位于第Ⅲ扇区时的充要条件是:Uα<0,Uβ>0,-√3Uα>Uβ;

Uref位于第Ⅳ扇区时的充要条件是:Uα<0,Uβ<0,√3Uα

Uref位于第Ⅴ扇区时的充要条件是:Uβ<0,√3|Uα|<-Uβ;

Uref位于第Ⅵ扇区时的充要条件是:Uα>0,Uβ<0,√3Uα>-Uβ;

进一步分析以上的条件就可以看出,电压矢量Uref所在的扇区完全由Uβ,√3Uα-Uβ,-√3Uα-Uβ三式决定,

因此令:

图十三 1

再定义,若U1>0,则A=1,否则A=0;若U2>0,则B=1,否则B=0;若U3>0,则C=1,否则C=0。

再令N=4C+2B+A,则可以通过下标计算Uref所在的扇区。

图十三 2

接下来就要来计算合成Uref的相邻电压矢量的作用时间以及零矢量的作用时间。

假设Uref位于第Ⅰ扇区时(参照图十二),用到的电压矢量是U4和U6,所以就需要计算T4和T6,以及零电压矢量的T0和T7。计算过程如下:

Uα*Ts = |U4|*T4 + |U6|T6cos(π/3);

Uβ*Ts = |U4|T40 + |U6|T6cos(π/6);

前面说过,|U4|=|U6|=⅔Udc,所以有:

Ts = ⅔UdcT4 + ⅓Udc*T6; ①

Ts = (UdcT6) / √3; ②

解①,②组成的方程组,得:

T4 = (√3/Udc) * Ts * (√3Uα/2 - Uβ/2) = (√3/Udc) * Ts * U2;

T6 = (√3/Udc) * Ts * Uβ = (√3/Udc) * Ts * U1;

又因为Ts=T0+T4+T6+T7,并且T0和T7的给定是灵活的,可以令T0=T7,那么就有:

T0 = T7 = (Ts - T4 - T6) / 2;

这样就计算出了Uref位于第Ⅰ扇区时各电压矢量的时间了。同理可以计算出位于其他扇区时的各电压矢量时间:

Uref位于第Ⅱ扇区时:

T2 = (-√3/Udc) * Ts * (√3Uα/2 - Uβ/2) = -(√3/Udc) * Ts * U2;

T6 = (-√3/Udc) * Ts * (-√3Uα/2 - Uβ/2) = -(√3/Udc) * Ts * U3;

T0 = T7 = (Ts - T2 - T6) / 2;

Uref位于第Ⅲ扇区时:

T2 = (√3/Udc) * Ts * Uβ = (√3/Udc) * Ts * U1;

T3 = (√3/Udc) * Ts * (-√3Uα/2 - Uβ/2) = (√3/Udc) * Ts * U3;

T0 = T7 = (Ts - T2 - T3) / 2;

Uref位于第Ⅳ扇区时:

T1 =(-√3/Udc) * Ts * Uβ = -(√3/Udc) * Ts * U1;

T3 = (-√3/Udc) * Ts * (√3Uα/2 - Uβ/2) = -(√3/Udc) * Ts * U2;

T0 = T7 = (Ts - T1 - T3) / 2;

Uref位于第Ⅴ扇区时:

T1 = (√3/Udc) * Ts * (-√3Uα/2 - Uβ/2) = (√3/Udc) * Ts * U3;

T5 = (√3/Udc) * Ts * (√3Uα/2 - Uβ/2) = (√3/Udc) * Ts * U2;

T0 = T7 = (Ts - T1 - T5) / 2;

Uref位于第Ⅵ扇区时:

T4 = (-√3/Udc) * Ts * (-√3Uα/2 - Uβ/2) = -(√3/Udc) * Ts * U3;

T5 = (-√3/Udc) * Ts * Uβ = -(√3/Udc) * Ts * U1;

T0 = T7 = (Ts - T4 - T5) / 2;

这样就完成了Uref位于6个扇区时的各电压矢量时间的计算,其中√3/Udc是SVPWM调制模式下的最大不失真电压幅值,在计算定时器各通道的捕获比较寄存器值时可以将√3/Udc直接去掉;Ts是PWM一个完整周期的时间,也就是定时器的计数周期。

在图十三中,整个PWM周期中,最先发生的是T0,接下来依次是T4,T6,T7,其中T4,T6是两个非零矢量,且T4先于T6发生,所以我们可以令先发生的非零矢量时间为Tx,后发生的非零矢量时间为Ty,并且T0=T7,那么就可以得出加载到三个捕获比较寄存器上的时间分别是:

T1 = (Ts - Tx - Ty) / 4;

T2 = T1 + Tx/2;

T3 = T2 + Ty/2;

只要根据Uref实际所在的扇区,确定Tx和Ty实际所对应的电压矢量,就可以计算出T1,T2,T3的值;然后再根据Uref所在的扇区画出类似图十三的三相PWM波形,就可以确定T1,T2,T3分别对应到三相A,B,C的哪一个通道,再赋值给对应通道的捕获比较寄存器,就完成了SVPWM算法。

关键词:

资讯
业界
企业
骑闻
产品
永磁同步电机(PMSM)的FOC闭环控制详解 环球百事通
永磁同步电机(PMSM)的FOC闭环控制详解-在学习FOC控制前,我对于FOC控制
2023-06-27
城市肖像丨北塘古镇-回马枪_当前快讯
00:00 02:49作品名:北塘古镇-回马枪网友昵称:4UDANCE舞蹈工作室发布
2023-06-27
全球首台16兆瓦海上风机首支叶片吊装完成 焦点报道
央视网消息:今天(6月27日)上午,全球首台16兆瓦海上风机的第一支叶
2023-06-27
专栏丨胡代松:邀友传杯风日好,光阴未必催人老 热点在线
踏莎行·汨罗行屈子原乡,文宗圣地。美人香草无穷意。九歌恻恻一招魂,
2023-06-27
开糖水加盟店怎么样?佳佳甜品加盟开店三大优势,花三分钟了解下!
开糖水加盟店怎么样?消费者的喜爱对于创业者来说,都是很好的选择,佳
2023-06-27
2023年高考考生报考专业技巧!男女考生适合报考什么院校及专业?
2023年高考考生报考专业技巧!高考男女考生报考什么院校,选什么专
2023-06-27
  中新网海口1月23日电(符宇群)海南省第六届人民代表大会第五次会议23日在海口举行第二次全体会议。海南省人民检察院检察长张毅在作报告
2022-01-24
  中新网太原1月23日电 (高雨晴 冉涌 张鹏宇)记者23日从国网山西省电力公司获悉,该公司冬奥保电应急发电队伍已到达河北张家口赛区,
2022-01-24
  中新网西宁1月23日电 (记者 李江宁)据青海省地震局23日消息,中国地震台网正式测定,北京时间2022年1月23日10时21分,在青海海西州德
2022-01-24
  中新网贵阳1月23日电 (周燕玲)对外开放,是内陆开放型经济试验区贵州正在召开的两会热点词汇,如何拓展海内外“朋友圈”助力贵州经济
2022-01-24
温馨生活好young 厦门推广文旅产品火爆全网
  中新网厦门1月23日电 (记者 杨伏山)“冬日暖阳厦门好young”福建省内宣传推广线下活动22日精彩收官。主办方称,本次活动火爆全网及福
2022-01-24
宁夏非遗传承人:刻刀里的守正创新更有“年味”
  (新春见闻)宁夏非遗传承人:刻刀里的守正创新更有“年味”  中新网银川1月23日电 题:宁夏非遗传承人:刻刀里的守正创新更有“年味
2022-01-24
沧州:8个重大科技专项项目确定 引领经济社会高质量发展
为充分发挥科技在经济社会高质量发展中的引领和支撑作用,沧州市确定8个项目为2021年全市重大科技专项项目。这8个重大科技专项项目分别为:
2022-03-19
  中新网海口1月23日电(王子谦 符宇群)海南省高级人民法院院长陈凤超23日说,2021年海南法院为自贸港建设提供坚强司法保障,全年有效管
2022-01-24
  新华社武汉1月23日电(记者王贤)随着春节假期临近,从广州、深圳等地返回湖北的旅客较多。为此,23日,武汉站、汉口站、襄阳东站、十堰
2022-01-24
  1月22日0—24时,广东省新增本土确诊病例3例和本土无症状感染者1例,均为珠海报告。23日,珠海市疫情防控新闻发布会上,珠海市政府副秘
2022-01-24
青海海西州德令哈市发生3.7级地震
  据中国地震台网正式测定,1月23日11时58分在青海海西州德令哈市发生3 7级地震,震源深度9千米,震中位于北纬38 40度,东经97 35度。
2022-01-24
  北京2022年冬奥会和冬残奥会颁奖花束已于近期完成交付。与传统的鲜切花不同,这些花束全部采用上海市非物质文化遗产“海派绒线编结技艺
2022-01-24
  中新网宿迁1月23日电 (刘林 张华东)核酸检测是当下及时发现潜在感染者、阻断疫情传播的有效方法。23日,记者从宿迁市宿豫区警方获悉
2022-01-24
  记者从天津市人社局获悉,从明天(24日)起,天津2022年度第一期积分落户申报工作正式开始,这是新修订的《天津市居住证管理办法》《天津
2022-01-24
  中新社北京1月23日电 (记者 刘亮)记者23日从中国海关总署获悉,2021年,中国海关组织开展“国门绿盾”专项行动,在寄递、旅客携带物
2022-01-24
  记者从天津市疫情防控指挥部获悉,天津疫情第341—360例阳性感染者基本信息公布。  目前,这20例阳性感染者已转运至市定点医院做进一
2022-01-24
“最美基层民警”武文斌:案子破了最管用
  中新网吕梁1月23日电 题:“最美基层民警”武文斌:案子破了最管用  作者 高瑞峰  同事称他为“拼命三郎”。从警14年,武文斌破
2022-01-24
  据“西安发布”消息,截至2022年1月23日,雁塔区长延堡街道近14天内无新增本地病例和聚集性疫情。根据国务院联防联控机制关于分区分级
2022-01-24
  中新网西宁1月23日电 (记者 孙睿)据青海省地震台网测定,2022年1月23日10点21分(北京时间)在青海省海西州德令哈市(北纬38 44度,东经
2022-01-24
江西南昌:市民赏年画迎新年 书法家挥毫送春联
  (新春见闻)江西南昌:市民赏年画迎新年 书法家挥毫送春联  1月23日,“赏年画过大年”新年画作品联展江西南昌站活动在江西省文化馆
2022-01-24
  中新网成都1月23日电 (祝欢)成都市第十七届人民代表大会第六次会议23日在成都举行,成都市中级人民法院院长郭彦与成都市人民检察院检
2022-01-24
列车临时停车3分钟救旅客
  (新春见闻)列车临时停车3分钟救旅客  中新网广州1月23日电 (郭军 黄伟伟)“车长,车长,4号车厢有位旅客腹涨难忍,身体不舒服”…
2022-01-24
女子背负命案潜逃24年 因涉疫人员核查落网
  中新网湖州1月23日电(施紫楠 徐盛煜 赵学良)1998年7月,犯罪嫌疑人杜某因家庭琐事,用菜刀将自己的弟媳砍伤致死。案发后,她从老家河
2022-01-24
广东“00后”雄狮少年锤炼功夫迎新春
  (新春见闻)广东“00后”雄狮少年锤炼功夫迎新春  中新社广州1月23日电 题:广东“00后”雄狮少年锤炼功夫迎新春  作者 孙秋霞 
2022-01-24
05-20 中国旅游日!河北创新发展“旅游+” 打造“京畿福地 乐享河北”品牌
中国旅游日!河北创新发展“旅游+” 打造“京畿福地 乐享河北”品牌
5月19日是第12个中国旅游日。今年中国旅游日主题为感悟中华文化,享受美好旅程。河北内环京津,外环渤海,携太行燕山之威,挟畿辅拱卫之要 [详细]
05-20 西湖游船“国潮宋风”特色夜游上线 体验穿越宋风豪华画舫之旅
西湖游船“国潮宋风”特色夜游上线 体验穿越宋风豪华画舫之旅
西湖之胜,晴湖不如雨湖,雨湖不如夜西湖。想要一边沐着晚风,一边乘坐游船感受西湖夜色的别样美景吗?那就来体验一把穿越宋风的豪华画舫之 [详细]
05-20 杭州:露营成今年最大热点 “城市露营”模式受年轻人追捧
杭州:露营成今年最大热点 “城市露营”模式受年轻人追捧
一顶帐篷、一副桌椅、一张地垫,寻个湖畔草坪,就能体验时下最热的旅行方式——露营。五一假期,杭州灵山景区铜鉴湖九曲梅韵和海棠融春两块 [详细]
03-19 2022岳阳国际旅游节开幕 特色农产品展销等系列活动目不暇接
2022岳阳国际旅游节开幕 特色农产品展销等系列活动目不暇接
今天,天下洞庭岳阳市君山区第九届良心堡油菜花节暨2022岳阳国际旅游节开幕,菊红、粉红、水红、桃红、紫色、白色等七色组成的4万亩花海在 [详细]
03-19 2022年郴州计划重点推进文旅项目101个 总投资354亿元
2022年郴州计划重点推进文旅项目101个 总投资354亿元
3月16日,我市举行全市文旅项目和城市大提质大融城项目集中开工仪式,市委书记吴巨培宣布项目开工。郴州嘉合欢乐世界、仙福路工地清风徐来 [详细]
03-19 宿州泗县深入推进文旅融合发展 擦亮城市品牌
宿州泗县深入推进文旅融合发展 擦亮城市品牌
近年来,泗县以争创安徽省文化旅游名县为目标,深入推进文旅融合发展,努力擦亮水韵泗州 运河名城城市品牌,全县文化旅游业实现高质量发展 [详细]
03-19 淡季不忘引流 京郊民宿市场有望迎来回暖
淡季不忘引流 京郊民宿市场有望迎来回暖
旅游淡季中的京郊民宿有望成为市场中最先复苏的板块。3月17日,北京商报记者调查发现,虽然正值旅游淡季,且受疫情变化的影响,不过各家民 [详细]